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ABSTRACT

Reactive oxygen and nitrogen species (ROS and RNS), once condemned 

as universal nemeses, are widely accepted today as powerful allies to the 

functional repertoire of a cell. ROS as signaling molecules mediates cellular 

proliferation, senescence, apoptosis, immune response, cytoskeleton 

remodeling and migration. Here, we examine the role of these in directional 

chemotaxis, a fundamental yet relatively novel platform for ROS based 

innate immune mechanisms.

Keywords: Reactive oxygen species (ROS), chemotaxis, GTPase, actin,

extra-cellular superoxide dismutase (ECSOD) 

INTRODUCTION

Chemotaxis is dened as the migration of cells along a concentration 

gradient. This cellular phenomenon is commonly seen in endothelia, 

neutrophils and monocyte-macrophages. Effects in differentiated tissue 

are subtle, as opposed to dramatic migrations in response to morphogen 

gradients that symbolize embryonic tissue. Innate immunity is a set 

molecular and cellular events that are initiated by a breach in integrity of 

anatomical and physiological barriers that form the rst line of host defense. 

Inammatory stimuli (infection or injury) result in the progressive movement 

of neutrophils towards the offending trigger. This follows an increase in 

vascular permeability with appearance of inter-endothelial gaps, diapediasis, 

extravasation and transmigration (Figure 1). This is accomplished by 

extending lamellipodia at the leading edge with concomitant retraction 

posteriorly. The formation of membrane bound cytoplasmic extensions is 

however, inherently stochastic, with several lamellipodia developing in 

parallel. Cycles of positive feedback ensure ne tuning this response to a 

single dominant extension with consequent vectorial movement. Critical 

to this response is the ability to sense chemically dened gradients. The 

importance of this subtle variation in concentrations may be gauged by 

morphogen induced patterning of developing tissue. 

Organized cells frequently exhibit binary behavior, switching between a 

subthreshold ‘none’ and a suprathreshold ‘all’ states.. In contrast, the event 

space in a quantum environment is innite and inherently more complex 

to comprehend. Several workers are racing to resolve signal transduction 

mechanisms that govern these response patterns. The ubiquitous production 

of reactive oxygen species, in tandem with metabolic intermediates offers an 

elegant solution to this problem. Fundamental to this process is the dynamic 

fusion and ssion of numerous scaffolds, domains and clusters of proteins and 

membranes. In this treatise, we review literature relevant to the development of 

the cell as a stable sensing tool. 

FOCAL ADHESIONS AND INTEGRINS

Focal adhesions (FAs) are transient units of cell-matrix connectivity.1 These 

begin as complexes and progress to stable adhesions (focal and brillar).2–4 A 

representative unit comprises clusters of integrin heterodimers (permutations of 

18 α and 8 β subunits that facilitate inter-cellular, cell-matrix and cell-pathogen 

interactions),5 integrin binding proteins such as talin,6 adapter proteins (paxilin,7

vinculin,8 and α-actinin)9 and enzymes. These include tyrosine kinases (e.g., 

focal adhesion kinase (FAK)10 and proline-rich tyrosine kinase-2 (Pyk2)),11

serine/ threonine kinases (e.g., integrin linked kinase (ILK),12,13 p21-activated 

kinase (PAK)14 and phosphatidyl-inositol-3 kinase (PI3K),15 phosphatases 

(PTEN))16 and protein tyrosine phosphatase (PEST).17 In addition to single 

proteins, pre-assembled complexes are also recruited to focal adhesions 

(PINCH- ILK-α parvin ternary complex).18,19

Rufes, are membrane patches that overly regions of heightened 

cytoskeletal remodeling. Rac20 and Rho21 are small GTPases in tandem 

with focal complexes/ adhesions that regulate this cellular restructuring in 

response to stimuli. The asymmetric distribution and downstream effectors 

of Rac1 and RhoA ensure the generation of a cellular bias.22 Thus, while 

Rac1 promotes leading edge activity by local actin polymerization events,23,24

RhoA is found in Rac1 decient zones and causes actin disassembly with 

subsequent posterior edge retraction. Initial focal complex dynamics are 

mediated by Rac1 and Cdc42, while stabilization is brought about by 

RhoA.2,3 The mechanisms of Rac1 induced actin reorganization involve 

a complex interplay of factors and includes activation-internalization of 

membrane bound receptors and microdomains,25 production of ROS and 

RNS,26 and several downstream protein-protein interactions.

ROS AND CELLULAR MICRO-ORGANIZATION

Reactive oxygen species, a molecular ensemble of free radicals and metabolic 

intermediates comprises superoxide anions (O
2

.-), hydrogen peroxide (H
2
O

2
), 

hydroxyl radicals (.OH) and ions and usually occurs in tandem with reactive 

nitrogen species (RNS). ROS are generated by the actions of NAD(P)

H oxidase, superoxide dismutase, Fenton’s chemistry, xanthine oxidase, 

myeloperoxidase and nitric oxide synthase (NOS). These reactive and short 

lived molecules are increasingly being viewed as critical regulators of signal 

transduction. The reader may wish to consult excellent reviews for details of 

ROS as signaling messengers.27–30 ROS in non-phagocytes are intracellular, 

lower in concentration, the p47phox analog (NOXO1) is constitutively active and 

substrates include NADH or NADPH. In addition, there is a slow sustained 

rise, a delayed peak and potential for repeat cycles of superoxide production 

unlike that seen in neutrophils. Superoxide anions are reactive and short lived. 
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These dismutate spontaneously or enzymatically to hydrogen peroxide, are 

complexed to nitric oxide or transported intracellularly by the chloride anion 

transporter (ClC3).31,32 A similar cycle of generation, transport, propagation and 

termination has been proposed for intracellular ROS and endosomal signaling.33

In conjunction with Rac, Rho and Cdc42 proteins, several investigators 

have identied redox sensitive periodic restructuring of the actin34–40

and microtubular41,42 cytoskeletal elements as an important initial event in 

a sequence terminating in  cell motility, extravasation, metastasis, trans-

differentiation, interactions with extra-cellular matrix and inter-cellular 

communication.

Mechanistic details of actin-centric movement involve the integration 

of numerous dynamic signaling platforms that function to transduce extra-

cellular signals into appropriate migratory cues. These effector multi-protein 

complexes include colin,43 gelsolin,44–47 lamin,48–50 and the non-receptor 

tyrosine kinases (FAK,51,52 Pyk253,54) and function to stabilize or dismantle 

networks of actin. As discussed previously, stimuli often include physical 

forces (e.g. light, mechanical stretch), growth factors, small signalling 

molecules such as ROS and RNS.55–57 In neutrophils, chemotatic movement 

is preceded by a sequence of polarizing events chiey orchestrated by 

alternate cycles of Rac and Rho activity.58–60 This results in a transient state 

of the cell characterized by the presence of multiple lamelipodia (Figure 2). 

The exact function of these cytoplasmic extensions is not known but, 

they may serve as chemical antennae. The cell is thus, able to sense and 

eventually seek optimal concentrations of stimulating molecules. Early 

work showed that chemo-attractants could interact with GPCRs22 and recruit 

phospatidylinositide-3-kinase (PI3K) to the membrane. The resulting catalytic 

product, phosphatidylinositol-3,4,5-triphosphate (PIP
3
)could, in turn, trigger 

actin reorganization.61–66 However, later experiments have proven that novel 

pathways may be involved in actual sensing mechanism.67,68 In experiments 

with neutrophils from chronic granulomatous disease (patients and 

mice),69,70 heightened recruitment of neutrophils with multiple lamelipodia 

to inammatory stimuli were observed. Failure to produce O
2

.- results in 

persistence of cells with depressed bactericidal activity and increased half 

lives of pro-inammatory chemokines. 

INTEGRINS AND RAFTS AS PLATFORMS FOR FOCAL 

SIGNALING

Although, the cellular events that transpire during migration have been well 

documented, the precise biochemistry behind gradient sensing in chemotaxis 

remains speculative. There is evidence that focal production of ROS at 

lamellipodia is able to mediate a successful chemotactic event. This is possible 

due to interactions between the integrin based cell adhesions scaffolds and 

lipid rafts. The latter are cholesterol and sphinomyelin enriched ordered 

microdomains present in the cell membrane. These are sites of anchorage of 

numerous signaling relevant small molecules such as Ras, G-protein coupled 

receptor, and receptors tyrosine kinases. Caveolae, are ask shaped local 

invaginations of the plasma membrane71,72 characterized by the presence of 

caveolins.73–76 Caveolin-1 binds to lamin, an actin based protein.77 Therefore, 

by retaining caveolin in focal adhesions and regulating their internalization,25,78

remodeling of the cytoskeleton may be accomplished by mitogens, infective 

agents, chemical modiers and mechano-transduction. Evidence for an integrin 

independent model, too, has been validated.79

Figure 1 | Temporal evolution of inammation in response to stimuli A) cross-section of skin and subcutaneous tissue, B) damage to tissue with release of noxious stimuli, C) Increased 

permeability of vasculature due to widening of inter-endothelial gaps, D) withdrawal of neutrophils from laminar vascular ow with increased adhesion and diapedesis, E) extravasation 

and migration of phagocytic competent cells towards chemo-attractants. 
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EXTRACELLULAR SUPEROXIDE DISMUTASE (ECSOD) 

– FACILITATES VECTORIAL CHEMOTAXIS

The enzyme ECSOD is a large 135 KDa homo-tetrameric protein secreted by 

smooth muscle cells and macrophages and is bound to the proteoglycan heparin 

of the extra-cellular matrix.80,81 This binding ensures a prolonged half life of ~ 

85 hours82 for the enzyme. The ECSOD in humans is encoded on chromosome 

4 by the gene sod3,83,84 has an activity of 1 x 109 M-1 s-1/ Cu,85 and has a 

plasma variant.86,87 ECSOD has a prominent anti-oxidative role in the body, 

both circulatory and tissue bound. The catalytic activity of the bound form is 

mediated in part by the interaction with the ECM and disruption of this contact 

impairs ECSOD dismutase action.87 Oxidative stress results in down regulation 

of the enzyme, activation by IFN-γ,  depression by TGF-β and intermediate 

states by TNF-α and IFN-α.88–91

A model (Figure 3), for this gradient discerning activity of migrating 

neutrophils is presented. Briey, there is competition between intracellular 

pro-inammatory molecules (cellular ROS) brought about by damage to tissue 

(muscle and/or vasculature) by injury and infection, and extra-cellular O
2

.-

generated by incoming neutrophils, for the ECSOD (extra-cellular superoxide 

dismutase). This saturates the enzyme and, along with, increased H
2
O

2
 levels 

inhibits ECSOD.92 The peroxide in turn associates with and activates integrin 

receptors, and is transported via aquaporin and /or ClC3 channels to the 

subcellular membrane compartment wherein actin rmodication is initiated. 

These changes include S-glutathionylation,93,94 nitrosation,94,95 carbonylation96,97

and oxidation by disulde bond formation.98,99 Indirect effects are mediated 

through several actin binding proteins. Repeated cycles as discussed above 

are able to convert the gradient signal into directed chemotaxis involving a 

dominant lamelipodium. The role of ECSOD derived H
2
O

2 
in VEGF mediated 

angiogenesis100 lends credence to this hypothesis. 

CONCLUDING REMARKS

The response of a cell to stimuli may best be described as a ‘fuzzy’ interplay 

of several events that results in behavior that is digital or quantal. This is 

dependent on the nature and location of scaffolding platforms that separate the 

compartments. These promote cycles of assembly-disassembly locally and serve 

to determine the nal outcome, i.e., ‘switch like’ in the case of plasma membrane 

signaling and ‘continuous’ as in signaling cascades which are endosomal 

membrane specic, biocatalysis, physiological sensing such as olfaction, 

vision, long term potentiation and depression (LTP and LTD). In this review, 

we have discussed the role of neutrophil chemotaxis in a microenvironment of 

graded inammatory signals, and the mechanisms of perceiving these at the 

cellular level. Clusters of integrins in association with lipid rafts are critical 

Figure 2 | Gradient sensing in phagocytic competent neutrophils A) Multiple lamelipodia encounters concentration gradient of chemo-attractant, B) Sensing causes appearance of single 

dominant lamelipodium while, others progressively involute, C) single lamelipodium prevails, D) direction specic transmigration of neutrophils 
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to the development of these distributed sensors which coat the phagocytic 

competent cell and enable microscopic reaction times. Pertubations of these 

have been shown to result in inefcient phagocytosis, increased susceptibility to 

infection, chronic inammation, progress to malignancy, autoimmune diseases, 

inappropriate allergies and hypersensitive reactions. The mystery of stimulus 

directed movement is far from resolved. Unravelling the underlying molecular 

processes that govern chemotaxis will advance our comprehension of several 

dependent phenomena in health and disease.

Figure 3 | Model depicting possible role of extra-cellular superoxide dismutase (ECSOD) in gradient sensing. A) Focal adhesions (FAs) are sites of ROS production. Competition between 

these and intracellular ROS for ECSOD. B) Explosive production of H
2
O

2
 inactivates ECSOD and triggers actin reorganization leading to development of a dominant lamelipodium. 
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